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E F F E C T  O F  R O T A T I O N  ON T H E  E L E C T R O G A S D Y N A M I C  

C H A R A C T E R I S T I C S  O F  F L O W  IN A C Y L I N D R I C A L  C H A N N E L  

O. V. Matvienko UDC 541.24:532.5 

The study of flows of unipolarly charged gas streams is of definite theoretical and practical interest, particularly in 

designing electrogasdynamic energy converters [1, 2]. 
Discussed below is the problem of the influence of prerotation on the electrogasdynamic characteristics of flow in an 

ideally conducting round tube with grounded walls. In addition to applications to the theory of propagation of EHD streams, 
such a problem is also of independent importance, since it makes it possible to explain certain characteristics of the motion of 

charged fluids in pipes [3, 4]. 
The description of the flow field uses two-dimensional axisymmetric Navier-Stokes equations, written in terms of the 

variables, stream function versus vorticity. It is assumed that the energy of the gas flow is much greater than that of the electric 
field, so that the flow is not sensitive to electric processes, i.e., the distribution of the flow parameters can be found before 
the "electric" characteristics. Thus, the flow equations in a dimensionless field will be written 
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In specifying the boundary conditions, it was assumed that at the entrance to the tube, the stream has a velocity 
distribution consistent with the law of rotation of a solid: 

~b = f2,  w = O, We=err  for z = 0 .  

Soft boundary conditions simulating the free outflow of a liquid were set at the exit: 

02r  020: O~Vo 
Ox 2 =0 ,  0x u =0 ,  "0-~- = 0  for z =  100. 

The following symmetry conditions hold on the tube axis: 

~b=0, V0=0 for { = 0 .  

At the tube wall, the constancy of the flow rate was monitored and the adhesion conditions were simulated: 

0 = 1 ,  Vo=O for ~=1. 
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The vorticity on the axis and wall of the tube was found in accordance with the method of [5]. The axial and radial 
velocity components were determined by numerical differentiation of the stream function: 

10~b 1 O~b 
= o-7" 

Here x and t are the dimensionless longitudinal and axial coordinates referred to the tube radius R; ~b is the stream function; 

colt = 2 t - l (ov~/Ox - -  OVx/0t) is the dimensionless tangential component of the vorticity; V 0 is the tangential velocity; a = 

f~R/U is a parameter characterizing the prerotation intensity at the entrance to the tube, and Re = 2UR/u is the Reynolds 

number, constructed in terms of the mean flow-rate velocity U = J 01Vxtdt. 

The modelling of the "electric" part of the problem was carried out under the following assumptions. The electric 
charges formed in the range x < 0, t < ti are introduced by the current into the tube. The size of the charge entrance cross 

section was ti < 1. This cross section was characterized by a constant charge density qi- Note that during the motion of 
charged particles in streams with recirculations, formation of regions where the longitudinal and transverse gradient q are of 
the same order is possible, and therefore, in the charge transfer equation, diffusion in the transverse direction will be taken 

into account. The dimensionless equations describing the distribution of potential �9 and charge transfer q take the form 
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the boundary conditions for integrating this system of equations are 

z = 0 :  q = q i  ( ( < ( 1 ) ,  q = O  ( ( > ( i ) ,  

02q 02,~ 
z =  100: ~ = 0 ,  Oz 2 =0, 

Oq 04 
N = 0 ,  

~ = 1 :  q = 0 ,  4 = 0 .  

(2) 

Here the variables @, q are referred to the characteristic quantities UR/b and eU/(47rRb); b is the charge mobility; Sc is 
Schmidt's number, taken as unity in the calculations. 

A fairly simple and versatile method [5] was used to solve the system of equations (1), (2). The problem was solved 

with a 31 x 15 grid not uniform along the two coordinates and having concentration points at the entrance and walt of the tube. 
The finite-difference analogue of the system of differential equations was a system of nonlinear algebraic equations which was 

solved numerically by use of the Gauss-Seidel method. Convergence of the iterations at a _> 3 was ensured by using lower 
relaxation for the vorticity and velocity circulation Vat. The convergence criterion of the iterations was the fulfillment of the 
inequality ] y(N)_y(N-1) ] < 10-3 I y(N) [ , where N is the iteration number, Y = (~k, oJ/t, Vat, q, ,I,). 
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Having thus completed the mathematical description of the problem, we now turn to the analysis of  the results. The 

charged particles enter the channel, and in addition to moving in the longitudinal direction, begin to move in the transverse 

direction as well. The transverse motion of the particles is chiefly determined by two factors: transport of  charged particles 

by the gas stream and motion of  the charges with respect to the gas (when b ~ 0) under action of  the electric field. Figure 

1 shows the distribution of the transverse component of  electric current 

a~ aq 
.i~ = q( V~ - -g-( ) - r t e -  l o ~  

in the channel (x = 0.7). Curves 1, 2 correspond to a straight-through flow a = 0 with qi = 1 and q = 10, and curve 3 

corresponds to a swirling flow o = 3 with qi = 3. It is evident that in the case of  low mobility of  the charge (small qi), the 

main factor determining the charge transfer is convection. The outflow of gas from the wall region to the axial region as the 

dynamic boundary layer is being formed is what accounts for the negative j~ values in the region near the axis. As the charge 

mobility increases, a major role is played by the displacement of  the charges under action of  the electric field. The radial 

velocity of  the charge, caused by radial component of the electric field a~/a~, appreciably surpasses the radial velocity of con- 

vective flow. As can be seen from the figure, charged particles execute motion against the flow to the channel axis (curve 2). 

Let us now turn to an analysis of the influence of rotation on the electrogasdynamic characteristics of  the flow. We 

first note the basic characteristics of the velocity fields. At small ~r (up to a = I), the influence of rotation on the velocity 

distribution is insignificant. When a > 2, under action of the centrifugal forces arising in the flow, a region of reduced 

pressure is formed in the zone near the axis. As a result, formation of a V x dip takes place in the vicinity of  the axis. Such 

a region of reduced injection velocity is formed near the entrance to the tube, where, because of  the interaction with the wall, 

boundary layers have already developed, but the tangential component of the velocity is still large. As the rotation increases 

further (a > 6), the pressure gradients increase to such a degree that in the region near the axis, a reverse-flow region is 

formed whose size and shape as well as the flow rate therein are determined by the parameters Re and a. 

The deceleration of  the stream in the region near the axis (and even its reversal at large a) results in an increase of 

V x at the periphery. The velocity diagram of V x has a maximum at some ~m ~ 0. As a increases, an increase in the maximum 

value of  V x and a displacement of  ~m tO the wall are observed. Downstream, friction forces cause the rotation to degenerate, 

and a Poiseuille velocity profile is formed. Figure 2 shows the distribution of  axial velocity component in the section x = 3 

for Re = 160. Curve 1 represents a straight-through flow with a = 0, and 2-4 represents swirling flow with a = 2, 4, and 6. 

As the rotation increases, an increase in radial velocity values also takes place. Moreover, in the initial portion of the 

flow, where centrifugal forces dominate, V~ > 0, and in the degeneration portion of  the rotation, V~ < O. 

The increase in the velocity of outflow to the wall in the initial portion of the flow results in an increase ofj~ here (Fig. 

1, curve 3), as was observed in the case of an increase in qi. In this case, however, the displacement of  the charge to the wall 

is chiefly due to convection processes, as a result of which the charged particles are carried into the vicinity of  the grounded 
wall. As the rotation increases, this in turn leads to a decrease in the outflow current 

1 

I = 27r / j ~  d~, 
I 

O 

the change of which is shown in Fig. 3, where curves 1-3 were plotted for Re = 160, qi = 10, and a = 0, 6, and 9, 
respectively. 

In addition to the integrated characteristic I, of interest as well is the density distribution of the longitudinal velocity 

component of  current Jx over the channel radius. Figure 4 shows the radial distributions of jx  in the sections x = 1, 8, and 13 
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for cr = 0, 6, and 9 (curves 1-3, respectively). In the straight-through and slightly swirling streams, the flow of electric current 

takes place in a filament of radius ~ .-~ ~i, a maximum of Jx is observed. In the region ~ < ~i, the dependence Jx(~) is 
characterized by a dip, as in the ease of the distribution of axial velocity. A further increase of rotation gives rise to a zone 
of electric back current in the region near the axis. At the same time, the charged particles execute motion in closed lines which 
differ slightly from the lines of flow at nonzero mobility of the charge or coincide with them when b = 0. 
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